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ABSTRACT 

The Launch Systems Testbed (LST) represents the evolution of vibroacoustics research and de- 
velopment work performed at NASA John F. Kennedy Space Center (KSC) over the last 15 
years. The U T  is located at the Launch Equipment Test Facility (LEV) in the KSC industrial 
complex. The LETF is operated by Sierra Lobo, Inc., as a member of University-Affiliated 
Technology Development Contract (USTDC) to KSC Spaceport and Engineering and Technol- 
ogy Directorate (YA), with ASRC Aerospace Corporation as a the prime contractor. Trajectory 
Simulation Mechanism (TSM) is a major component of the U T ,  developed specifically to simu- 
late nonstationary acoustic loads on launch pad structures, vehicles, and payloads. TSM en- 
hances the capabilities within LST for simulating launch environments of future vehicles. The 
scaled launch environments will be used to predict the full-scale launch environment via an ap- 
propriate scaling procedure. 

Air Force Research Laboratory (AFRL) has tasked NASA KSC to perform a basic technoiogy 
test program in support of developing a low-cost clean pad (incorporating passive mitigation 
techniques) for future launch vehicles. The overall goal of the program is to develop innovative 
launch exhaust management systems, which effectively reduce launch acoustic environment with 
innovative duct designs, while eliminating traditional sound suppression water systems. Passive 
techniques, such as nontraditional duct geometries, resonators, and diffusers, etc., will be investi- 
gated. The overall goals are to advance innovative concepts for a clean pad while developing 
ideas to reduce transmitted sound via investigation and modeling of jet exhaust acoustic and flow 
field characteristics. The series of tests outlined in this report represent baseline tests and are 
geared towards defining the acoustic load environment on the TSM pad for open and closed duct 
configurations. 

This report summarizes the cold jet acoustic testing for Mach 2.5 supersonic nitrogen jet issuing 
from a nozzle with 1-inch exit diameter. Acoustic data, including spectral sound power and 
Overall Sound Pressure Level (OASPL), are obtained both for a free jet and with the jet flowing 
through a rigid-walled duct with a J-deflector. The relative performance of closed duct and open 
duct is evaluated. The results show that the closed duct is superior to the partially open duct, and 
results in about 3-decibel (dB) noise reduction (near the duct axis) relative to the free jet. The 
location of the nozzle exit plane (NEP) relative to the duct inlet plane (DIP) has a significant ef- 
fect on the acoustic field. The results suggest that the location of NEP at 10 inches above the 
DIP results in reduced acoustic loads relative to 5 inches above the duct inlet and 1 inch into the 
duct inlet. 
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SCALE MODEL EXPERIMENTS ON SOUND PROPAGATION FROM A MACH 2.5 
COLD NITROGEN JET FLOWING THROUGH A RIGID-WALLED 

DUCT WITH A J-DEFLECTOR 

1. INTRODUCTION 

Acoustic loads in a launch vehicle environment represent a principal source for inducing struc- 
tural vibration and may be critical to the proper functioning of vehicle components and ground 
support structures and equipment in the immediate vicinity of the launch pad. A knowledge of 
acoustic loads, including the overall sound pressure level (OASPL), sound pressure level (SPL) 
spectrum, and the distribution (or correlation) of surface acoustic loads, is necessary to provide 
the input for vibroacoustic analysis and evaluation of structural integrity. In the design of launch 
vehicles, it is highly desirable that data on acoustic loads (near-field and far-field noise levels) be 
generated both analytically and from testing of small-scale and full-scale models. Since full- 
scale acoustic and vibration testing is often cost prohibitive, the option of small-scale testing 
combined with analysis methods remains as a practical alternative. 

Noise from subsonic jets is mainly due to turbulent mixing, comprising the contributions of 
large-scale and fine-scale structures (Lighthill 1952, 1954). The turbulent mixing noise is mainly 
broadband. In perfectly expanded supersonic jets (nozzle exit plane pressure equals the ambient 
pressure), the large-scale mixing noise manifests itself primarily as Mach wave radiation, caused 
by the supersonic convection of turbulent eddies with respect to the ambient fluid [Tam 1998; 
Kandula and Caimi 20021. In imperfectly expanded supersonic jets, additional noise is generated 
on account of broadband shock noise and screech tones. 

Scale models are often used in the early design stage as a means of predicting the acoustic envi- 
ronment associated with flight vehicles. A detailed knowledge of the mechanisms of noise gen- 
eration and noise radiation by jets is essential in designing a scale model of the noise source 
(Morgan et. al, 1961). In order to ensure complete similarity between model and full scale simi- 
larity of flow, similarity of noise generation, and similarity of noise propagation must be ensured. 

In practice, it is generally difficult to duplicate (simulate) all the characteristic parameters in the 
scale model. Model testing with even smaller rocket engines requires extensive safety precau- 
tions. Heated jet facilities also involve considerable complexity and cost. The use of less expen- 
sive facilities or lower gas temperatures, for example, would considerably simplify model testing 
(Morgan et. al, 1961). The ability to conduct a scale-model test with a substitute gas (air, nitro- 
gen, helium, etc.) results in considerable savings (reduced costs of test facilities, test time) and 
advantages (Kinzie and McLaughlin 1999). A discussion of the scaling laws for jet noise, with 
emphasis on temperature effects, has been recently provided in Kandula and Vu 2003. 

The purpose of this program effort is to develop cold jet testing capability to simulate small-scale 
launch environments for use in testing and evaluation of candidate launch pad ducts for future 
space vehicles for AFRL. Gaseous nitrogen is exclusively tested in the present investigation. 
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2. OVERVIEW OF AFRL TEST PROGRAM 

The AFRL research project encompasses the following four separate phases. 

Phase 1 involves the design, manufacture, and installation of a pressurized nitrogen chamber 
with an interchangeable supersonic nozzle on the TSM and an exhaust duct composed of a J- 
deflector and a removable cover for simulating open and closed ducts. Additionally, Phase 1 es- 
tablishes a test and measurement plan for TSM operation, transducer type, locations for acoustic 
and flow tests, and data acquisition hardware requirements. 

Phase 2 effort consists of testing and data analysis to characterize the acoustic and flow environ- 
ments of traditional closed and partially open ducts with J-deflector. In the partially open duct 
case (or simply the open duct case), the top cover of the duct is removed, with the sides of the 
duct remaining. Data is collected and analyzed for three unique supersonic jet core and plume 
conditions - core totally within the duct, core partially inside the duct, and core completely out- 
side the duct. It is known that the jet core length depends on jet Mach number and jet exit tem- 
perature. 

Phase 3 of the program will evaluate the effectiveness of various acoustic suppression schemes 
relative to the baseline tests of Phase 2. 

Phase 4 requires engineering assessment of Phases 2 and 3 testing in order to classify the candi- 
date schemes for follow-on research and development. 

These baseline tests are concerned with the definition of launch exhaust acoustic environment for 
three unique plume - conditions plume totally within the duct, plume partially inside the duct, 
and plume completely outside the duct. Measurements on the TSM pad at nine separate loca- 
tions around the azimuth and two separate altitudes are planned. Data analysis includes presenta- 
tion of data in terms of 1/3-octave band sound pressure level (1/3-OBSPL) and OASPL. 

3. TEST OBJECTIVES 

The main objectives of this experimental investigation, covering Phase 1 and Phase 2, are as fol- 
lows: 

a. Characterize the flow and acoustic environment of a free supersonic jet 
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b. Characterize the acoustic environment of a supersonic jet flowing through a cov- 
ered duct with a J-deflector 

c. Characterize the acoustic environment of a supersonic jet flowing through an open 
duct with a J-deflector 

4. TEST FACILITY AND INSTRUMENTATION 

4.1 TEST FACILJTY 

The TSM located at the LETF in the KSC Industrial Area served as the primary facility for con- 
ducting the AFRL test program. It is designed to simulate x - y launch trajectories for non- 
stationary scaled acoustic load on the launch vehicle, payload, and ground support equipment. 
TSM features a 1110-scaled model of the Space Shuttle launch parameters (Figure 1). Presently, 
only cold jet simulation capability is available. By cold jet, it is implied here that the nozzle exit 
temperature is colder than the ambient temperature. The TSM facility also provides the neces- 
sary instrumentation for measurement of acoustic and exhaust flow field. 

4.1.1 Nitrogen Supply 

A schematic of TSM and the overall test setup is provided in Figure 2. The TSM facility is out- 
fitted with a chamber and a supersonic nozzle. The chamber is fed from pressurized gaseous ni- 
trogen bottles (8000 psi) in conjunction with two pressure regulators in series. The pneumatic 
system was modified to facilitate continuous supply of nitrogen for the duration of tests. 

4.1.2 Supersonic Nozzle 

The convergent-divergent nozzle was designed on the basis of characteristic method and was 
made of stainless steel (Figure 3). The Mach 2.5 nozzle has an exit diameter of 1 inch, compared 
with 3 to 4 feet of nozzle exit diameter typical of large rocket engine nozzles. The chamber and 
nozzle conditions for the scale model test series are displayed in Table 1. The nozzle is capable 
of generating sound levels in excess of about 150 d€3 near the NEP. 

4.1.3 Exhaust Duct 

A scaled aluminum exhaust duct with an upstream J-deflector (30-degree inclination to the verti- 
cal) was fabricated for installation under the nozzle. Figures 4a and 4b represent the schematics 
of the closed and open duct configuration respectively. A photographic view of the actual 
jetlduct setup is displayed in Figure 4c. The cross section of the duct is 6 inch by 12 inch. The 
exhaust duct can be positioned at desired levels relative to the NEP. Only static tests (with a sta- 
tionary nozzle) are considered in the present investigation. 

Figures 5a, 5b, and 5c show the various jet/duct configurations investigated and where the dis- 
tance between the NEP and the duct inlet plane was varied. The distance between the NEP and 
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the duct inlet plane is varied such that the jet core is mostly outside the duct, partially inside the 
duct, and fully inside the duct. 

4.2 INSTRUMENTATION 

4.2.1 Flow Measurements 

The chamber conditions (pressure and temperature) are measured by a pressure gauge and ther- 
mocouple mounted on the chamber wall. The nozzle exit conditions (exit Mach number, etc.) 
are obtained by a pitot tube and a static pressure probe. Details of the design of the pitot tube and 
the static pressure probe are not included here. Knowing the total pressure and static pressure, 
we can compute the exit Mach number with the aid of Rayleigh’s pitot tube formula (Shapiro 
1953). 

4.2.2 Acoustic Measurements 

Acoustic field surrounding the nozzle/duct configuration was measured by  an array of acoustic 
transducers (microphones) placed azimuthally at 22.5-degree increments (see Figure 6). Bruel & 
Kjaer microphones of M-inch diameter (B& K model 4189) were used for measuring the sound 
pressure level. They were placed azimuthally at 80 nozzle exit diameters from the NEP, thus 
representative of far field condition. 

4.3 DATA ACQUISITION 

4.3.1 Flow Data 

Time history measurements are made of chamber pressure, chamber temperature, and pitot and 
static pressures at the NEP. These measurements serve to indicate the time at which steady-state 
conditions are achieved. Generally, it takes about 60 seconds (s) for steady conditions to prevail. 

4.3.2 Acoustic Data 

As soon as the flow becomes steady, recording of the acoustic data begins. Pressure-time data 
from the microphones are processed by the data acquisition system. The data are sampled at a 
maximum rate of 125,000 samplesls so that sound frequencies up to 60 kilohertz (kJ3.z) can be 
recorded. With the aid of LabView software and Fast Fourier Transform (FFT), the time domain 
data are processed in the form of narrowband spectra, U3-octave-band sound pressure levels, and 
OASPL at each location. See appendix A. 

5. TESTPROCEDURE 

The chamber and the nozzle are attached to a mounting plate on the TSM horizontal carriage. 
This carriage is placed in the “maintenance position” and retracted towards the TSM base for all 
static tests. For the duct testing, the exhaust duct is installed below the nozzle at the desired lev- 
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els corresponding to one of the following configurations: duct inlet plane (DIP) 10 inches below 
the NEP (jet core mostly outside the duct; Figure 5a), DIP 5 inches below the NEP (jet core par- 
tially inside the duct; Figure 5b), and NEP 1 inch below the DIP (jet core totally inside the duct, 
Figure 5c). Pretest calibration of all the nine microphones is carried out. The B&K calibrator is 
used for this purpose, with 94 dB and 114 dB at 1 kHz. 

First the pressure regulator (PR-1) is opened such that the downstream pressure is about 3000 
psig. Subsequently, the second pressure regulator (PR-2) control valve is operated such that the 
chamber pressure (indicated by the digital readout placed close to the regulator) is at the desired 
value of 250 pounds per square inch gage (psia) to ensure Mach 2.5 at the nozzle exit. At this 
time, the chamber pressure, the pitot pressure, and the static pressure at the nozzle exit begin re- 
cording. Once the steady-state chamber pressure is achieved, as indicated by the real-time dis- 
play in the control room, the acoustic data begins to be recorded. The acoustics data are taken 
over a period of about 4 seconds. 

Posttest calibration of the microphones is carried out. Quick-look plots are then generated fol- 
lowing the test, with the aid of the LabView-based software developed for the purpose. These 
plots include chamber pressure history, chamber temperature history, narrow band and 1/3 octave 
SPL spectrum, and OASPL distribution. 

6. SAFETY CONSIDERATIONS 

Proper safety procedures are followed in conducting the tests. One day prior to the test, the 
safety office and LETF personnel are notified. On the test date, all personnel within the 100-foot 
radius of the TSM pad are cleared. Additionally, no tests will be performed during lightning, at 
the onset of thunderstorms, or high winds in the KSC Industrial Area. The testing also adheres to 
the procedures within TSM Operation Technical Manual. 

7. TESTMATRIX 

Static nozzle tests are designed to generate steady-state flow conditions similar to Flight Readi- 
ness Firing (FRF) on the Shuttle launch pad. These steady-flow conditions with a stationary noz- 
zle serve to define the flow and acoustic field on the TSM pad for scaling and baseline charac- 
terization. Each test is designed to record about 6 seconds of acoustic data to accurately define 
the nozzle exhaust environment. Tests are repeated when necessary. 

Table 2 presents the test and measurement matrix. The test matrix is planned on the basis of the 
following considerations. Two duct configurations corresponding to open or closed ducts were 
considered. Three vertical duct locations -jet core mostly outside the duct (lowest duct posi- 
tion); jet core partially inside the duct (mid-duct position), and jet core mostly inside the duct . 
(highest duct height) - are investigated. In order to achieve these conditions, the NEP is located 
10 inches and 5 inches above the DIP, and 1 inch below the DIP. Two sensor heights of 10 
inches and 53 inches above the ground were employed. 
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Photographic views of the free jet and the jet flowing through a closed duct are presented in Fig- 
ures 7a and 7b respectively. 

8. RESULTS AND COMPARISONS 

8.1 RESULTS 

8.1.1 Pressure and Temperature History 

Figures Sa through 8m display the pressure and temperature history. In particular, the pressure 
plots include the history of chamber pressure (Pl), pitot pressure at the NEP (P2), and the static 
pressure at the NEP (P3). Sensor P2 is located at the center of the NEP, and P3 is located on the 
nozzle axis at 1 inch downstream of the NEP. The temperature plot belongs to the chamber pres- 
sure history (P3). The pressure plots suggest that steady-state flow is achieved in about 60 to 80 
seconds after the flow has started. The computed Mach number at the NEP (based on the meas- 
ured values of the pitot pressure and the static pressure) is close to Mach 2.5 in accordance with 
the design value. Once the steady state is achieved, the acoustic data &e recorded. 

8.1.2 Spectral Sound Power 

Figures 9a through 9n show the spectral content of sound power (1/3 octave band) for all the test 
cases studied. Microphone 5 is not present in most of the closed duct and open duct tests since it 
is the path of the flow exiting the duct. The spectral content of the sound power level for the free 
jet (Figure 9b) suggests that the spectral distribution is symmetric, independent of the azimuthal 
position of the microphone. A peak frequency of about 4 1<Hz is noted in this case and agrees 
well with the estimated value based on a Strouhal number ( St = f i j  l d j  ) of 0.2. Here f denotes 
the frequency, uj  the nozzle exit velocity, and d j  the nozzle exit diameter. In the closed duct 
case (Figure 9a) with duct inlet 10 inches below the NEP, the peak frequency near e = 0 deg. 
(corresponding to the duct axis) is about 4 kHz, which is close to the free jet value. However, the 
peak frequency increases as the angle from the jet axis is increased. Differences in the spectrum 
for various angles are observed over a wide range of frequencies (roughly 1.5 decades). 

Figure 9i presents the spectral distribution of sound power level for the open duct configuration, 
with the duct inlet 10 inches below the NEP. Notable differences in the spectral behavior are ob- 
served between the closed duct and the partially open duct case. In the case of the partially open 
duct, significant directivity effects persist even at much lower frequencies. 

8.1.3 Directivity of Overall Sound Pressure Level 

The directivity of OASPL for various test runs is presented in Figures 10a through 10n. In these 
plots, the data for free jet (with sensors at 54 inches above ground level) are also included as a 
reference case. A direct comparison of the OASPL for the various jet/duct configurations is pre- 
sented in the next section. 
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8.2 COMPARISONS 

8.2.1 Effect of Ground Level 

Ground effect on the OASPL is examined in Figures 1 la, 1 lb, and 1 IC for the case of free jet, 
closed duct, and open duct respectively. In all these cases, the NEP is situated at 10 inches above 
the duct inlet plane. For a free jet, the ground effect at 10 inches is about 2 dB higher than that at 
54 inches. The ground effect is on the order of 3 dB for the closed duct case and is the highest in 
the case of open duct where a ground effect of the order of about 10 dB is observed. 

8.2.2 Effect of Nozzle Height Relative to the Duct Inlet Plane 

Figure 12a shows a comparison of the OASPL for free jet with that of a jet passing through a 
closed duct, with the NEP located at different heights relative to the duct inlet. While there is 
axial symmetry of the OASPL for the free jet, there is considerable directivity of the OASPL in 
the presence of an exhaust duct. For the NEP to duct inlet distances of 5 inches and -1 inch 
(NEP inside the duct), the OASPL near the duct axis exceeds the value for the free jet case. 
When the NEP is held at 10 inches above the duct inlet, a reduction in OASPL of about 3 dB is 
achieved relative to the free jet case. These findings suggest that there is an optimum location of 
the NEP relative to the duct inlet plane, which results in the largest reduction in the OASPL 
[Kandula et al. 20031. 

In the case of open ducts (Figure 12b), trends are contrary to the closed duct case with regard to 
the OAPSL variation with the duct inlet to NEP &stance. For the open duct, the OASPL in- 
creases as the distance between the NEP and the duct inlet plane increases. In general, the 
OASPL near the duct axis for open ducts are considerably higher than that for the free jet case. 
This result suggests that closed ducts are preferable to open ducts as far as sound mitigation is 
concerned. 

8.2.3 Comparison of Performance for Closed and Open Ducts 

A direct comparison of the directivity of OASPL between the closed duct and the open duct is 
illustrated in Figures 13a through 13c for the various distances between the NEP and the duct 
inlet plane. As indicated earlier, for both the duct configurations when the NEP is located at 5 
inches above and 1 inch below the duct inlet plane, the OASPL near the duct axis (0 to 20 de- 
grees) exceeds that for the free jet. Only when the NEP is located at 10 inches above the duct 
inlet plane, it is noticed that the closed duct provides a reduction of about 3 dB (relative to the 
free jet) near the duct axis. In all cases, the open duct produces OASPL near the duct axis that 
exceeds the free jet value. As the &stance between the NEP and the duct inlet plane is de- 
creased, the deviation of OASPL for the closed duct and the open duct diminishes. 
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9. CONCLUSIONS 

Both the closed duct and the open duct introduce considerable directivity effects. With the use of 
a closed duct, the overall sound power of a Mach 2.5 supersonic jet is reduced by about 3 dB 
near the duct axis, with higher reductions away from the duct axis. The peak frequency is found 
to increase above the free jet value as the angle from the jet axis is increased. The results also 
suggest that there is an optimum distance between the nozzle exit plane and the duct inlet for 
minimizing the sound power. The partially open duct results in increased sound levels near the 
duct axis relative to the free jet case. With regard to the closed duct, larger reductions in sound 
power may be realized by increasing the duct length, increasing duct cross section (adding a dif- 
fuser), and incorporating acoustic liners or resonators on the duct walls. 
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Table 1. Typical Nozzle Conditions 

Item 
Stagnation pressure, psia 
Stagnation temt>erature. R 

Value 
25 1 
500 

I Nozzle exit diameter, in I 1.0 
Exit pressure, psia 
Exit temDerature. R 

14.7 
222 

Exit velocity, ft/s 
Acoustic velocitv at exit. ft/s 

1820 
728 

1 Ambient temperature, R I540 

Nozzle exit Mach number 
Exit jet Reynolds number 
Ambient Dressure. Dsia 

9 

2.5 
4x106 
14.7 



8 
9 

Nozzle 

K- 

Sensor Test 

I14 

Date 
11-5-02 

115 
Notes 

Configuration Height (in.)* Level (in.) Duration(s) 
Closed duct 10 54 70 

Table 2. Summary of Mach 2.5 cold nitrogen jet acoustic test runs 

11-5-02 
11-5-02 
11-5-02 

Free jet - 54 80 
Free jet - 10 90 
Closed duct 10 10 50 

11-7-02 
11-7-02 
11-7-02 

Closed duct 5 54 - 
Closed duct 5 10 270 
Closed duct -1 10 100 

11-7-02 
11-7-02 

Closed duct -1 54 PI not steady 
Closed duct -1 54 60 

11-13-02 
11-13-02 

Open duct 10 54 60 
ODen duct 10 10 70 

11-13-02 
11-13-02 
11-21-02 

*Relative to the duct inlet plane 
**Relative to the ground 

Open duct 5 10 75 
Open duct 5 54 110 
Own duct -1 54 85 

P1= chamber pressure. 
Nozzle exit plane is 73 inches above ground. 
Sensors arc radius equals 80 inches. 

12-11-02 I Open duct 

10 

-1 54 88 



Figure 1. Trajectory simulation mechanism 
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Figure 2. Overall test setup 
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Figure 3. Free jet configuration 
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Figure. 4a. Schematic of the closed duct configuration 
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18 in. 30 in. 

Figure 4b. Schematic of the open duct configuration 

Figure 4c. Photograph of the jet/duct configuration 
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Figure 5a. Jetlduct configuration with jet core mostly outside the duct 
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Figure 5b. Jetlduct configuration with jet core partially inside the duct 
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Figure 5c. Jet/duct configuration with jet core totally inside the duct 
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Figure 6. Microphone locations 
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Figure 7a. Photograph of the free jet flow 

Figure 7b. Photograph of a jet flowing through a closed duct 
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Figure 8a. Pressure and temperature history for Run 1 (closed duct) 
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Figure 8b. Pressure and temperature history for Run 2 (free jet) 
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Figure 8c. Pressure and temperature history for Run 3 (free jet). 

300 

2.50 

200 

,-. 
.1 
B 150 
v 

P 
loo 

50 

0 

-50 

Nozzle Exit Diametel.: 1 in 
Nozzle Exit Plaw: 73 in. above GL 

0 78 40 60 80 loo 120 140 

Titile (sec) 

100 

90 

80 

70 

60 

M 

40 

30 

E - c 

Figure 8d. Pressure and temperature history for Run 4 (closed duct) 
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Figure 8e. Pressure and temperature history for Run 6 (closed duct) 

Figure 8f. Pressure and temperature history for Run 7 (closed duct) 
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Figure 8g. Pressure and temperature history for Run 9 (closed duct) 
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Figure 8h. Pressure and temperature history for Run 10 (open duct) 
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Figure 8j. Pressure and temperature history for Run 12 (open duct) 
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Figure 8k. Pressure and temperature history for Run 13 (open duct) 

Figure 81. Pressure and temperature history for Run 14 (open duct) 
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Figure 8m. Pressure and temperature history for Run 15 (open duct) 
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Figure 9b. Spectral sound power for Run 2 (free jet) 
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Figure 9c. Spectral sound power for Run 3 (free jet) 
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Figure 9d. Spectral sound power for Run 4 (closed duct) 
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Figure 9e. Spectral sound power for Run 5 (closed duct) 
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Figure 9f. Spectral sound power for Run 6 (closed duct) 
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Figure 9h. Spectral sound power for Run 9 (closed duct) 
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Figure 9i. Spectral sound power for Run 10 (open duct) 
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Figure 9j. Spectral sound power for Run 11 (open duct) 
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Figure 9k. Spectral sound power for Run 12 (open duct) 
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Figure 9m. Spectral sound power for Run 14 (open duct) 
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Figure lOj. Directivity of OASPL for Run 11 (open duct) 

38 



. 

135 
1 30 
125 
1 20 
115 
110 

Run# 12 270 
Open Duct, Mach 2.5 Jet 
Nozzle Exit Diameter: 1 in. 
Nozzle Exit Plane: 73 in. above GL 
Duct Inlet Plane: 5 in. below NEP 
Acoustic Sensors: 80 in. arc radius; 10 in. above GL 

Figure 10k. Directivity of OASPL for Run 12 (open duct) 

140 
135 
130 
125 
120 
115 
110 

270 Run# 13 
Open Duct, Mach 2.5 Jet 
Nozzle Exit Diameter: 1 in. 
Nozzle Exit Plane: 73 in. above GL 
Duct Inlet Plane: 5 in. below NEP 
Acoustic Sensors: 80 in. arc radius; 54 in. above GL 
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Figure 1On. Directivity of OASPL for Run 15 (open duct) 
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Figure 1 la. Ground effect on OASPL for a free jet with the NEP 
at 10 inches above the duct inlet plane 
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Figure l lb .  Ground effect on OASPL for a closed duct with the NEP 
at 10 inches above the duct inlet plane 
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Figure 1 IC. Ground effect on OASPL for an open duct with the NEP 
at 10 inches above the duct inlet plane 
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Figure 12a. Effect of nozzle exit plane height (relative to duct inlet plane) 
for a closed duct 
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Figure 12b. Effect of nozzle exit plane height (relative to duct inlet plane) 
for an open duct 
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Figure 13a. Comparison of OASPL for a closed duct and an open duct with 
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Figure 13b. Comparison of OASPL for a closed duct and an open duct with 
the NEP at 5 inches above the duct inlet plane 

Mach 2.5 Jet 

I35 

130 

125 

120 

115 

110 

270 
-e- Free Jet (Run# 2) I 

Run# 9 (Closed Duct, h= - 1  in.) 

Run# 14 (Open Duct, h= -I in.) 

Nozzle exit Diameter: 1 in. 
Nozzle Exit Plane: 73 in. above GL 
Acoustic Sensors: 80 in. arc radius; 54 in. above GL 
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APPENDIX A 

LabView Description 

Appendix A gives the LabView details for calibration and data acquisition and analysis. As pre- 
viously indicated, all the LabView effort is due to Geoffrey Rowe of Swales (USTDC). 

A-1 CALIBRATION 

Figures A-la and A-lb show typical plots from LabView describing the calibration of a single 
microphone at 1000 Hz for SPL of 114 dB and 94 dB respectively. The plots display the pres- 
sure-time history, the spectral power density, and the sound pressure level spectrum. 

A more automated result for the calibration of all the nine microphones at 114 dB (at 1 kHz) for 
Run 12 is exhibited in Figure A-2. 

A-2 PRESSURE AND "PERATURE HISTORY 

A raw plot of chamber pressure (Pl), chamber temperature (Tl), pitot pressure (P2) and static 
pressure (P3) is illustrated in Figure A-3. 

A-3 MICROPHONE TIME TRACE 

Figure A-4 shows a typical trace of the raw microphone pressure-time signal p'(t) for Run 12, 
microphone 9. The correspondmg power spectral density and SPL spectrum are also shown here. 

A-4 SOUND PRESSURE LEVEL SPECTRUM AND OASPL 

The SPL spectrum and the OAPSL of the microphones for Run 12 are sketched in Figure A-5. In 
the OAPSL plot, the result of the free jet, showing nearly a symmetric character, is also presented 
for comparison purposes. 
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